pwm脉宽调制原理
脉宽调制(PWM)基本原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形。也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,即可改变逆变电路输出电压的大小,也可改变输出频率。脉宽调制控制技术以其控制简单,灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振波开关技术将会成为PWM控制技术发展的主要方向之一。
解释pwm控制及其基本原理
对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。
采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
扩展资料
PWM为一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。
电压或电流源以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。
pwm控制技术的基本原理是什么?
pwm的基本原理如下:1.控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲。2.用这些脉冲来代替正弦波或所需要的波形,也就是说在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。3.按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。以下为pwm的优点:以下为可以从处理器到被控系统信号为数字形式,无需进行数模转换,这是因为让信号保持为数字形式可将噪声影响降到最小。
pwm原理是什么 pwm原理介绍
1、pwm的原理:控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形,也就是说在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
2、pwm是脉冲宽度调制的缩写,它是一种模拟控制方式,是根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,以此来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变。
PWM的基本原理是什么
PWM(脉冲宽度调制Pu ls e Width Modulation)原理:脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。
在PWM电路中,载波频率fc与调制信号频率fr之比称为载波比,即N=fc/fr。根据载波和调制信号波是否同步,PWM逆变电路有异步调制和同步调制两种控制方式。
1、异步调制
当载波比N不是3的整数倍时,载波与调制信号波就存在不同步的调制,就是异步调制。如fc=10fr,载波比N=10,不是3的倍数。在异步调制控制方式中,通常fc固定不变,逆变输出电压频率的调节是通过改变fr的大小来实现的,所以载波比N也随时跟着变化,就难以同步。
异步调制控制方式的特点:
①控制相对简单;
②在调制信号的半个周期内,输出脉冲的个数不固定,脉冲相位也不固定,正负半周的脉冲不对称,而且半周期前后1/4周期的脉冲也不对称,输出波形就偏离了正弦波;
③载波比N越大,半周期内调制的PWM波形脉冲数就越多,正负半周不对称和半周内前后1/4周期脉冲不对称的影响越小,输出波形越接近正弦波。所以在采用异步调制控制方式时,要尽量提高载波频率fc,使不对称的影响尽量减小,输出波形更接近正弦波。
2、同步调制
在三相逆变电路中,当载波比N是3的整数倍时,载波与调制信号波能同步调制。
在同步调制控制方式中,通常保持载波比N不变,若要增高逆变输出电压的频率,必须同时增高fc和fr,保持载波比N不变,保持同步调制不变。
同步调制控制方式的特点:
①控制相对较复杂,通常采用微机控制;
②在调制信号的半个周期内,输出脉冲的个数是固定不变的,脉冲相位也是固定的。正负半周的脉冲对称,而且半个周期脉冲排列也是左右对称的,输出波形等效于正弦。(图/文/摄: 张霞1) @2019